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Abstract

The JSOF research lab discovered a series of zero-day vulnerabilities, collectively known as 
Ripple20, in a widely used embedded TCP/IP stack called Treck.

In this paper we go in to the details of CVE-2020-11901, one of the most interesting vulner-
abilities in Ripple20.

Behind the scenes, CVE-2020-11901 is comprised of 4 different vulnerabilities located in 
proximity to each other in the code and bundled in to one CVE. While every version of Treck 
using the vulnerable component is affected by a critical remote code execution vulnerability of 
these 4 (at the time of disclosure), some of the vulnerabilities affect all versions of Treck, and 
others affect only newer versions or only older versions.

Despite the fact that some of these vulnerabilities were fixed in the Treck stack over the 
years, all of the vulnerabilities existed “in-the-wild” at the time of disclosure, due to some 
vendors using older versions of the Treck TCP/IP stack and dropping ongoing support from 
Treck, and presumably also because these vulnerabilities have not been publicly recognized as 
security issues prior to the JSOF disclosure. This is just another artifact of the complexities 
and intricacies of vulnerabilities in a complex supply chain.

The most severe of CVE-2020-11901 are critical DNS client-side vulnerabilities located in 
Treck’s DNS resolver component, which received a CVSSv3.1 score of 9.1. If successfully ex-
ploited, they allow for a pre-authentication arbitrary remote code execution in the context of 
the network stack, often the OS kernel. These vulnerabilities are of particular interest because 
a sophisticated (e.g. nation state) attacker can potentially reply to a DNS request from outside 
of the corporate network, thus breaking network segmentation.

In addition to full details about the vulnerabilities themselves, we will also discuss details 
of exploitation on a Schneider Electric UPS Device.
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Chapter 1

CVE-2020-11901 Overview

CVE-2020-11901 is a single name for several critical client-side vulnerabilities in the DNS re-
solver of the Treck TCP/IP stack. If successfully exploited, they allow remote code execution 
for an unauthenticated attacker that is able to respond to a DNS query generated from an 
affected device. The vulnerabilities can potentially be exploited across network boundaries, 
making them extremely dangerous.

The vulnerabilities mostly stem from an incorrect DNS label length calculation. One vul-
nerability is triggered by specifying small RDLENGTH value, and another leverages DNS message 
compression scheme in order to achieve an integer overflow.

In this paper, we detail the vulnerabilities and we will explain an exploit on a Schneider 
Electric UPS device.
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Chapter 2

DNS Protocol Primer

As the vulnerabilities reside in the DNS resolver component of the network stack, we’ll take a
quick look into the DNS protocol.

2.1 The Basics

The domain name system (DNS) is a networking infrastructure protocol that enables TCP/IP
applications to map domain names into IP addresses. The domain name space is hierarchical:
it starts from an unnamed root, branching into top-level domains (TLDs) such as, com, org,
edu, and continues to branch from there. A fully-qualified domain name (FQDN) represents a
path from a root to a node in the DNS tree, and it is written from right-to-left, starting with
the node and ending with the root. For instance, www.example.com. (note the trailing dot),
represents this path:

.(root) // com // example // www

A TCP/IP application converts a name into an address using a DNS resolver. The resolver
issues a query to one or more configured DNS servers, requesting information about the domain
in question. Once a DNS response arrives, it is parsed and the information is passed to the
application, and often cached for additional use. Treck TCP/IP has a set of public API functions
for interaction with the DNS resolver, as we will see later.

Information about domains is distributed among name servers. Every name server manages
one or more zones. A zone is a sub-tree of the hierarchical domain name space that is adminis-
trated separately. A zone file stores information about the zone in records. Each record has a
name, value, type, class and TTL. The interpretation of the record’s value depends on its type
and class.

In practice, the only used class is the internet class IN (1). Common record types within
this class include:

Type Description

A IPv4 address.
AAAA IPv6 address.
MX Mail exchange record. The Record’s value is a tuple of preference value and a

domain name of a host capable of accepting emails.
CNAME Used to define aliases.
NS Specifies an authoritative name server for the domain. The record’s Value is a

domain name.
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Figure 2.1: DNS high level structure

Figure 2.2: DNS header format

MX Records Because some of the code presented later in the paper concerns MX records, 
we will elaborate more about them. MX (Mail eXchange) records are an essential part of the 
way emails work. When sending an email using the familiar user@host notation, the mail client 
issues a DNS query of type MX to resolve host. As an answer, the DNS server returns a domain 
name of a mail server (also called “MX hostname”). Each MX hostname is associated with a 
16-bit integer called preference value used to prioritize hostnames. A smaller preference value 
has a higher priority.

Since a domain name of the mail server is returned (rather than an IP address), the client’s 
resolver needs to further resolve the MX hostname with a second request in an order to get 
an IP address. To reduce latency, most DNS servers hand-in the IP address along with name. 
Nonetheless, this “double-query” functionality should be supported by the resolver.

2.2 DNS Packet Format

DNS messages are generally transmitted over UDP 1. The high level structure of a DNS message 
is shown in figure 2.1. A DNS message (query or response) has has a fixed-length header of 12 
bytes, followed by 4 variable-length sections.

The DNS header format is shown in figure 2.2. The transaction ID is a 16-bit field set by the 
resolver (client) to match the response with the query. The QR field is a bit specifying whether 
the packet is a query (QR=0) or response (QR=1). RCODE holds the response code, where a non-
zero value indicates an erroneous conditions. The QDCOUNT, ANCOUNT, NSCOUNT and ARCOUNT 
specify the number of entries in each of the 4 sections following the header, respectively.

1There is an option to transfer DNS over TCP but we will not discuss it here
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Figure 2.3: Question section format

Figure 2.4: DNS resource record format

Each entry of the questions section, referred to as “question”, has a specific format, shown 
in figure 2.3. The query name field specifies the name being looked up. It follows a specific 
format we will describe later. The client specifies the type of the record of interest in the query 
type field.

The entries of answers, authority and additional sections are called resource records. These 
records will be major player in our vulnerabilities. The format is depicted in figure 2.4. Each 
resource-record is associated with a NAME, to which the record refers, as well as with a TYPE 
and a CLASS. The TTL (time-to-live) field specifies the number of seconds the resource record is 
allowed to be cached by the client. The RDATA field contains the record’s value. Its length is 
specified in the RDLENGTH field.

2.3 Domain Names Format and Message Compression

Last but not least, the binary format of a name. The format is specified in [2, sections 3.1, 4.1.4], 
and it is relatively simple. A domain name is a sequence of labels, terminated by the empty 
label. Each label is preceded by a length byte. The maximum label length is 63 bytes, and the 
empty label has length 0. As an example, we will encode the domain name www.example.com:

Figure 2.5: Domain name encoding

The conversion from the binary format to the ASCII format is straight-forward: replace all 
length bytes with dots (.) except the first and the last.

A typical DNS response includes the same domain name or a part of it several times. 
Consider a query of type A for the domain name www.example.com. Some DNS servers include 
www.example.com two times in their response:

0000 e3 70 81 a0 00 01 00 01 00 00 00 00 03 77 77 77 .p...........www

0010 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 01 00 .example.com....

0020 01 03 77 77 77 07 65 78 61 6d 70 6c 65 03 63 6f ..www.example.co

0030 6d 00 00 01 00 01 00 01 0d f6 00 04 5d b8 d8 22 m...........].."

Figure 2.6: DNS response packet in which www.example.com is repeated twice

The first www.example.com is included as part of the QUESTIONS section, while the second
is included as part of the ANSWERS section. Much more repetition is possible with queries for
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domains that have multiple A or CNAME records (you can try resolving www.youtube.com by
yourselves).

To reduce the size of DNS messages, a compression scheme can be used. In the scheme
taken by the designers of DNS, compression is achieved by replacing a sequence of labels with
a pointer to a previous occurrence of the same sequence. The pointer is encoded in two bytes,
the first of them begins with two high bits 11, and the other 14 bits specify an offset from the
start of the DNS header.

Figure 2.7: Compression pointer format

To illustrate the concept, suppose that at offset 0x10 from the start of a DNS response 
packet there is a sequence of labels corresponding to example.com:

Figure 2.8: Domain name encoding of example.com

In order to encode, for example, the domain name x.y.z.example.com, we can encode it 
directly or utilize the compression scheme. In the latter case, the encoded domain name would 
look like this:

Figure 2.9: Encoding of x.y.z.example.com using compression

This instructs the DNS server or client to concatenate the sequence of labels beginning at 
offset 0x10 to the sequence x.y.z.. The expanded domain name is x.y.z.example.com, as 
expected.

Returning to the example of resolving www.example.com, let’s look at a real world case. 
This is part of a response from Google’s 8.8.8.8 DNS server, which uses compression:

 Figure 2.10: DNS response packet in which compression is used for the second occurrence of
www.example.com

As you can see, the name of answer resource record is replaced by a pointer to offset 0xc, 
which is the start of the www.example.com domain name.
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Chapter 3

The Vulnerabilities

In this section we will explain the vulnerabilities known as CVE-2020-11901.

3.1 Treck’s DNS Resolver Internals

A TCP/IP application running on top of the Treck TCP/IP stack interacts with the DNS
resolver using high-level APIs such as tfDnsGetHostByName and tfDnsGetMailHost. When
a request is made using these functions, a tsDnsCacheEntry structure is created in order to
record some information about it (a new cache entry is not created if a cache-entry describing
the request is already present). Some of tsDnsCacheEntry fields are shown below:

1 typedef struct tsDnsCacheEntry {

2 struct tsDnsCacheEntry TM_FAR * dnscNextEntryPtr;

3 struct tsDnsCacheEntry TM_FAR * dnscPrevEntryPtr;

4 // Pointer to chain of address information structures.

5 struct addrinfo TM_FAR * dnscAddrInfoPtr;

6 // ...

7 // String used in DNS query packet (in DNS label format)

8 ttCharPtr dnscRequestStr;

9 // Error code (if any) returned from socket of DNS server

10 int dnscErrorCode;

11 // ...

12 // Indicates if this entry is completed and has been retrieved by the user

13 tt16Bit dnscFlags;

14 // ...

15 // ID of the last request sent that was associated with this cache entry

16 tt16Bit dnscRequestId;

17 // Query type (Name, MX, reverse)

18 tt16Bit dnscQueryType;

19 };

tsDnsCacheEntry structures are stored in a doubly-linked list. They hold information about
the DNS request being made, such as the request string (dnscRequestStr), the transaction ID
(dnscRequestId) and the query type of the request (A, AAAA, MX, . . . ) with dnscQueryType.
This struct also holds information about the response, most notably using a chain of address
information structures (pointed to by dnscAddrInfoPtr).

An addrinfo is a small structure containing the following fields:

1 struct addrinfo {

2 int ai_flags; // AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST

3 int ai_family; // PF_INET, PF_INET6

4 int ai_socktype; // SOCK_xxx (not used)

5 int ai_protocol; // 0 or IPPROTO_xxx (not used)

6 unsigned int ai_addrlen; // length of ai_addr
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7 #define ai_mxpref ai_addrlen

8 char TM_FAR * ai_canonname; // canonical name for nodename

9 #define ai_mxhostname ai_canonname

10 struct sockaddr TM_FAR * ai_addr; // binary address

11 struct addrinfo TM_FAR * ai_next; // next structure in linked list

12 };

An addrinfo structure holds information about addresses returned by the DNS server. The
exact information it holds depends on the query type. When the query type is A or AAAA
(requesting IP address for a name), this structure holds IP address information (ai addr) along
with a canonical name (ai canonname), if supplied at the response. If the query type is MX
(mail exchange), the MX preference value is stored in place of ai addrlen and the MX hostname
is store in place of ai canonname.

3.2 Parsing DNS Responses

Treck’s DNS resolver processes incoming DNS responses in a function called tfDnsCallback.
This function accepts tsDnsCacheEntry structure as argument and is responsible for parsing a
DNS response message and caching information about the queried name.

During the parsing of the ANSWERS section from the DNS response packet, the code
allocates an addrinfo and stores relevant information in it. Let us take a closer look at the
piece of (pseudo-)code parsing MX records:

1 if (RDLENGTH <= remaining_size) {

2 /* compute the next resource record pointer based on the RDLENGTH */

3 labelEndPtr = resourceRecordAfterNamePtr + 10 + RDLENGTH;

4 /* type: MX */

5 if (cacheEntryQueryType == DNS_TYPE_MX && rrtype == DNS_TYPE_MX) {

6 addr_info = tfDnsAllocAddrInfo();

7 if (addr_info != NULL && RDLENGTH >= 2) {

8 /* copy preference value of MX record */

9 memcpy(&addr_info->ai_mxpref,resourceRecordAfterNamePtr + 10, 2);

10 /* compute the length of the MX hostname */

11 labelLength = tfDnsExpLabelLength(resourceRecordAfterNamePtr + 0xc, dnsHeaderPtr,

labelEndPtr);↪→

12 addr_info->ai_mxhostname = NULL;

13 if (labelLength != 0) {

14 /* allocate buffer for the expanded name */

15 asciiPtr = tfGetRawBuffer((uint)labelLength);

16 addr_info->ai_mxhostname = asciiPtr;

17 if (asciiPtr != NULL) {

18 /* copy MX hostname to `asciiPtr` as ASCII */

19 tfDnsLabelToAscii(resourceRecordAfterNamePtr + 0xc, asciiPtr,

dnsHeaderPtr, 1, 0);↪→

20 /* ... */

21 }

22 /* ... */

23 }

24 /* ... */

25 }

26 /* ... */

27 }

28 }

As we can see, the resolver performs the following steps to handle incoming MX answers:

1. Allocate a new addrinfo struct.

2. Store the MX preference value in the ai mxpref field.
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3. Compute the length of the MX hostname using tfDnsExpLabelLength.

4. Allocate a new buffer based on the returned length labelLength.

5. Convert the raw MX hostname to ASCII using tfDnsLabelToAscii, and store the result
into the newly allocated buffer asciiPtr.

Notice that tfDnsLabelToAscii is not aware of the size of the allocated buffer asciiPtr.
The tfDnsLabelToAscii function will copy only alphanumeric and ‘-’ characters to the des-
tination buffer, until non-alphanumeric or non-hyphen character is reached. Furthermore, if
the 4th and 5th arguments passed to it are 1, 0 respectively, tfDnsLabelToAscii function will
honor the DNS compression scheme. We can see from the code that if the length returned
by tfDnsExpLabelLength is too small, tfDnsLabelToAscii will overflow the allocated buffer,
with an alphanumeric overwrite only.

At this stage we will investigate the length calculation function tfDnsExpLabelLength in
depth.

3.3 DNS Label Length Calculation

Below is a pseudo-code for tfDnsExpLabelLength:

1 tt16Bit tfDnsExpLabelLength(tt8BitPtr labelPtr, tt8BitPtr pktDataPtr, tt8BitPtr labelEndPtr){

2 tt8Bit currLabelLength;

3 tt16Bit i = 0, totalLength = 0;

4 tt8BitPtr newLabelPtr;

5

6 while (&labelPtr[i] < labelEndPtr && labelPtr[i] != 0) {

7 currLabelLength = labelPtr[i];

8 if ((currLabelLength & 0xc0) == 0) {

9 totalLength += currLabelLength + 1;

10 i += currLabelLength + 1;

11 } else {

12 if (&labelPtr[i+1] < labelEndPtr) {

13 newLabelPtr = pktDataPtr + (((currLabelLength & 0x3f) << 8) | labelPtr[i+1]);

14 if (newLabelPtr < labelPtr) {

15 labelPtr = newLabelPtr;

16 i = 0;

17 continue;

18 }

19 }

20 return 0;

21 }

22 }

23 return totalLength;

24 }

tfDnsExpLabelLength calculates the length of the DNS label pointed to by labelPtr. It’s
basic operation is to sum-up all length bytes of the given label (domain name), while honoring
compression pointers. It accepts a pointer to the start of the packet data buffer in pktDataPtr

and an end-pointer in labelEndPtr. Using the end-pointer, the function ensures that out-of-
bound data is not read. The pointer to the start of the packet data buffer, pktDataPtr, is
necessary to support the DNS compression scheme described earlier.

The function maintains the total label length in the totalLength variable. It continues
to read the current label length (currLabelLength) as long as it is greater than 0. If the
current label length ≤ 63, it is added to the totalLength variable. Otherwise, it means
that a compression pointer follows (one of the higher two bits is set). The function reads
the compression pointer and computes the new label pointer in newLabelPtr. Then, it verifies
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that the new label pointer points before the current label pointer. If this is the case, the length
of the new label pointed to by the compression pointer, is computed in the same way, and added
to totalLength.

There are several issues with this implementation:

1. The type of the totalLength variable is tt16Bit (typedef for unsigned short). If pos-
sible, overflowing the totalLength variable would result in a small number returned by
tfDnsExpLabelLength. A buffer would then be allocated based on that number, and the
buffer could be overflown by tfDnsLabelToAscii.

2. It does not honor the 255 maximum domain name length as specified in [2].

3. It does not validate the characters used in the domain name itself: they should be al-
phanumeric and ‘-’ only.

4. It treats label lengths with most-significant-bits 01 and 10 as if they specify compression
pointer. According to [2], only two high bits 11 should specify compression, and the
other cases are reserved for future use. This behavior could come handy in some cases, as
0x4130 for example is a valid compression pointer and also contains valid alpha-numeric
characters.

In addition, notice that the function stops processing when &labelPtr[i] reaches the
end-pointer labelEndPtr. It does not return an error in this case, but simply the current
totalLength value.

3.4 Vulnerability #1: Bad RDLENGTH Leads to Heap Overflow

Recall that in the section 3.2 we discussed the handling of MX resource records. An end-pointer
is passed to the tfDnsExpLabelLength and is calculated based on the RDLENGTH field:

1 labelEndPtr = resourceRecordAfterNamePtr + 10 + RDLENGTH;

The RDLENGTH is a 16-bit field part of the resource record (recall section 2.2). This field
specifies the number of bytes of the RDATA field, and it is attacker-controlled. An attacker can
specify a small RDLENGTH value, causing the length calculation to stop prematurely. This results
in tfDnsExpLabelLength returning small length number. As explained earlier, this leads to
heap-based buffer overflow vulnerability. This vulnerability only exists in newer versions of the
Treck TCP/IP stack, and affects the latest version at the time of disclosure. We do not know
the exact version when this vulnerability was introduced.

3.5 Vulnerability #2: From Integer Overflow to Heap Overflow

Treck’s resolver accepts DNS response packets over UDP with a size of up to (≤) 0x5b4 (1460).
As explained earlier, the total label length maintained by tfDnsExpLabelLength is of type
unsigned short (16-bit width). So we can now ask: is it possible to encode a domain name
within a single DNS response packet so that the domain name length is expanded (as calculated
by tfDnsExpLabelLength) to 65536 (216) or more?

To achieve this kind of length amplification over UDP1, we certainly must use the compres-
sion feature of DNS. Keep in mind that with a compression pointer we can only jump backwards
from our current label pointer (see section 3.3), making the task more challenging.

1At least in the versions of Treck at our disposal, DNS over TCP is not supported. Had it been supported,
our task would have been much easier because DNS over TCP allows large packet sizes of up to 65536 bytes.
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Since tfDnsExpLabelLength does not enforce the validity of characters in a label, we can
overload the bytes of a label with useful information. “Overload” in this context means that
bytes normally part of the label contents have an extra role in which they are interpreted as
length bytes or compression pointers under different circumstances.

The Basic Technique The following example introduces the basic technique we used in our
proof-of-concept. Consider the encoded name shown in figure 3.1.

 Figure 3.1: Tiny example of using compression pointers. Cells with * can be filled with any byte

value

The technique is easier to understand if we think about the encoded name as a matrix. In 
this tiny example, each row has size of 16 bytes. This number was chosen so that it will be 
easier to follow.

Suppose that the calculation of the name’s length starts at offset 0xf, the last byte of the 
first row. This can be achieved by placing the name somewhere in the DNS response and then 
refer back to it using a compression pointer (more about this below). With this assumption, 
tfDnsExpLabelLength would read a label length byte of 0x0f, and advance the input head to 
the last byte of the second row (staying on the same column). Then it reads a label length of 
0x0e and advance the input head to the second-to-last byte of third row (offset 0xe of the third 
row). At this point it reads a compression pointer. The pointer offset is 0xe which is strictly 
less than our starting point (at offset 0xf), so the process repeats from offset 0xe. The next 
compression read is to offset 0xd, and so on. The length calculation stops when it reaches offset 
0x07, because we placed a null-byte there in this example.

Of course we can add more rows between the starting point and the part of the branch 
bytes. In figure 3.2 we demonstrate the addition of 5 extra rows.

Figure 3.2: Tiny example of using compression pointers with 5 extra rows
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The extra rows we added have no particular role except extending the name as much as
possible. To make the explanation easy for the rest of the section, we shall introduce some
definitions. A lane is a column in this matrix, terminated by a branch byte. A branch byte
routes the lane to the appropriate compression pointer - paving the way for the next lane.

In the previous example we used 8 lanes. We can improve this situation by including more
compression pointers at the second-to-last row and more branches at the third-to-last row.
Building on that idea, we reach the following:

Figure 3.3: Full illustration of the basic technique

Now we use all of the 16 lanes at our disposal. At the last row we have 8 compression pointers
and so 8 branch bytes at the second-to-last row. This leaves us with another 4 compression
pointers to be used at the second-to-last row. These compression pointers are reached by the
branch bytes at the third-to-last row (offsets 4-7), which leaves us with a place for another
2 compression pointers, and so on. The last lane (which begins in the first row offset 0), is
terminated with a null byte (at offset 0 of the forth row).

By using this construction, in this example, we reached a total length of 1502. This is pretty
neat if you consider the fact that the name itself only occupies 128 bytes.

Proof-of-Concept In the simple example presented above we did not reach a state where
the totalLength variable is overflowed. However, we are not far from it. We have two tools we

can use to maximize the total length:

1. Maximize the size of a row in the matrix. Because the maximum length byte allowed is
63 (=0x3f), we can use rows which are up to 64 bytes in length.

2. Pad lanes with more extra rows.

We used these two tools to maximize the total length. With 64 lanes, this construction
overflows the 16-bit totalLength variable in tfDnsExpLabelLength.

We are almost done. Until now, we hid some information under the rug:

1. Where this “long name” is placed in the DNS packet.

2. How we begin the length calculation from a specific spot in this long name.

3. How we overflow, if tfDnsLabelToAscii only copies alphanumeric characters in to the
buffer, but our matrix is comprised of non-alphanumeric characters.
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The answer to all of these is in how we constructed the packet. A DNS packet can have
multiple questions, so we added another question, the name of which is our matrix construction.
The MX hostname then consists of a label consisting of a chosen alpha-numeric payload followed
by a single compression pointer that will land us exactly on the required starting byte.

The result is heap-based buffer overflow vulnerability: due to the integer overflow, tfDns-
ExpLabelLength returns a labelLength of small size. Based on this size, a buffer is allocated
on the heap. tfDnsLabelToAscii is then asked to copy the encoded name as ASCII, overflowing
the buffer just-allocated with the payload at the beginning of the MX hostname.

This vulnerability affects the latest Treck version at the time of disclosure (version 6.0.1.6).

3.6 Vulnerability #3: Read Out-of-Bounds

In older versions of Treck, there was a read OOB vulnerability during name parsing. The
following snippet of pseudo-code shows the MX parsing logic as it was in older versions:

1 if (cacheEntryQueryType == DNS_TYPE_MX && rrtype == DNS_TYPE_MX) {

2 addr_info = tfDnsAllocAddrInfo();

3 if (addr_info != NULL) {

4 /* copy preference value of MX record */

5 memcpy(&addr_info->ai_mxpref, resourceRecordAfterNamePtr + 10, 2);

6 /* compute the length of the MX hostname */

7 labelLength = tfDnsExpLabelLength(resourceRecordAfterNamePtr + 0xc, pktDataPtr);

8 addr_info->ai_mxhostname = NULL;

9 if (labelLength != 0) {

10 /* allocate buffer for the expanded name */

11 asciiPtr = tfGetRawBuffer(labelLength);

12 addr_info->ai_mxhostname = asciiPtr;

13 if (asciiPtr != NULL) {

14 /* copy MX hostname to `asciiPtr` as ASCII */

15 tfDnsLabelToAscii(resourceRecordAfterNamePtr + 0xc, asciiPtr, pktDataPtr);

16 /* ... */

17 }

18 /* ... */

In this older version, we can see that there are no checks on the packet buffer. In particular,
there’s no end-pointer being calculated and passed to tfDnsExpLabelLength. In this version,
tfDnsExpLabelLength have the exact same operation as explained in section 3.3, except that
it doesn’t have bounds check. Instead, it will iterate over the length bytes until a null-byte is
reached, possibly crossing buffer bounds.

This issue could result in a denial-of-service vulnerability, if, for instance, the function reads
from an unmapped page while iterating over the length bytes.

More interestingly, the issue could result in an information leakage vulnerability: tfDns-

LabelToAscii has no bounds check either, so it could copy OOB bytes into the destination
buffer. This means that when parsing MX responses, data from the heap could be interpreted
as an MX hostname. The MX hostname just read is later resolved by the client in an attempt to
get an IP address (see paragraph about MX records in 2.1). The result is that it is potentially
possible to leak data from the heap as part of the MX hostname being resolved.

The issue affects Treck versions at least 4.7, and was fixed in later versions2. We don’t
know the exact version in which Treck fixed the issue. Suffice to say that the vulnerability still
impacts devices in-the-wild: Some vendors stop updating the Treck stack, yet they continue to
ship their products to other vendors in the supply chain. The unfortunate result is that there
are embedded devices that contain an older version of Treck, and are thus vulnerable to this
issue.

2the fix for the read OOB was a bad fix and caused the bad RDLENGTH vulnerability, described in section 3.4.
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3.7 Vulnerability #4: Predictable Transaction ID

Another vulnerability, only seen in earlier versions of the network stack, is that the DNS trans-
action ID is incremented serially, and starts at 0, making it easily guessable. This means that
the attacker might not need to execute complex man-in-the-middle attack in order to find the
value of the transaction ID. This flaw makes our DNS exploits easier and can lead to other
consequences. Despite being fixed over the years in the Treck TCP/IP stack it still exists in
devices in the wild, in cases where companies stopped support for the Treck stack or other cases.

3.8 Closing Remarks

In this chapter, we have demonstrated a heap-based buffer overflow in the DNS resolver code
using two different techniques: bad RDLENGTH and integer overflow. The function responsible
for the copy (tfDnsLabelToAscii) will only copy alphanumeric and ‘-’ (hyphen) characters to
the destination buffer, until non-alphanum or non-hypen character is reached. This means that
we have alphanumeric overwrite, and that we can stop overflowing at our will using an invalid
character. In the next chapter we will see how we leveraged this primitive into a remote code
execution.

The two heap overflow vulnerabilities (and the read OOB) were demonstrated in the parsing
logic of the MX type. However, the same vulnerabilities are present also during the processing
of CNAME resource records and PTR resource records. Considering the fact that CNAME
records are supported by the DNS resolver no matter what the original query type was, this
means we can cause heap-based buffer overflow with every type of DNS query generated by an
affected device.

The two heap overflow vulnerabilities affect the latest Treck version at the time of disclosure
(version 6.0.1.66). The read out-of-bounds and predictable transaction ID vulnerabilities were
fixed in later versions of the network stack, we don’t know the exact version.
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Chapter 4

Exploiting CVE-2020-11901 on a
Schneider Electric UPS Device

In this part we will show how we exploited CVE-2020-11901 on a Schneider Electric UPS device
and achieved remote code execution. The specific model we used is an APC Smart-UPS 750
(SMT750I/ID18/230V) running firmware v09.3 together with a Network Management Card
(NMC) version 2 (model AP9630) running AOS version v6.8.2 (latest at the time of disclosure).

A UPS (Uninterruptible Power Supply) device is designed for use in enterprise networks,
data centers, and mission-critical systems. It ensures, using an embedded battery, that devices
connected to it will not suffer from power outages or fluctuations. As such, exploiting a UPS
device remotely, can have disastrous consequences.

Many of the UPS devices manufactured by Schneider Electric can be connected to an IP
network via a network card called NMC. The NMC runs on an x86-based processor and it runs
the Treck TCP/IP as its network stack. However, this processor implements segmentation in
a unique manner: instead of calculating a linear address by shifting the segment left by 4-bits
like most x86-based architectures, it shifts the segment left by 8-bits. The operating system,
network stack, and APC application all run in 16-bit real mode.

Having only a single device at the beginning of our research, and worried about ruining the
device, we decided to attempt research and exploit development on the device without JTAG
or other debug capabilities. Our main sources of information were static analysis, and crash
dumps containing a small stack trace and some register values.

Our proof-of-concept exploit uses the bad RDLENGTH vulnerability to run a shellcode which
shuts down all UPS outlets, turning off any device relying on it for its operation. We will now
describe our exploit - the primitives established and the techniques used. The exploit should
be easily adaptable to devices using a vulnerable version of the Treck stack with the same heap

configuration.

4.1 Exploit Strategy

When it comes to exploiting heap overflow vulnerabilities, there are generally two routes:

• Overwrite heap meta-data information.

• Overwrite application-specific data structures.

The former is usually considered more generic, as it does not require overflowing any specific
data structures, only memory blocks, possibly of a specific size.

In the previous white paper we detailed exploitation of CVE-2020-11896 [3], where we chose
to exploit the device by corrupting heap metadata. We will now examine the Treck heap
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implementation present on the UPS device to determine if this is a suitable plan in this case as
well.

4.2 Treck Sheap (Simple Heap) Internals

Treck uses a proprietary, highly configurable heap implementation. In this specific configuration,
the heap is different from the heap described in [3].

During device boot, the heap is created statically in a hard-coded address, initially comprised
of 4 free blocks, each 0xAF00 bytes in size. The heap features two bins, each comprised of a
free-list: one for “small” blocks under 0x400 bytes, and one for larger blocks. Free-list blocks
are saved in a singly linked list, where each block contains a “next” pointer and its size in
dwords. The size is saved both at the beginning (prefix) and the end of the block (postfix).
Allocated blocks contain prefix and postfix size fields as well.

4.2.1 malloc()

The entry point for allocation in the Treck heap is tm kernel single malloc. This is the low-
level heap function invoked by more abstract allocation functions such as tfGetRawBuffer for
data buffers and tfGetShareBuffer for packets. tm kernel single malloc receives a single
size argument. Internally, the function will call tfSheapGetFreeListBlock which will iterate
the free-list bins. If the requested size fits the small free-list bin (size <= 0x400), it will try
to allocate from that bin first, resorting to the big bin if no small block was found.

Figure 4.1: Free list illustration

The function tfSheapGetFreeListBlock is responsible for selecting a free block and will

iterate over the entire free-list. For every block it will check if the prefix and postfix size fields
match by adding the prefix size to its base pointer and reading the postfix size field from the
resulting address. It will do this for every block in the list, regardless of whether the block
is allocated and returned to the caller. If the sizes are not equal, an assert will fail and the
machine will crash. Assuming everything went well, the tightest fitting block for the requested
size will be returned. tm kernel single malloc will then check if the returned block is bigger

than the requested allocation size - if so, it will use only as much memory as it requires, making
a new free block out of the remaining memory.

4.2.2 free()

The entry point for freeing memory in the Treck heap is tm kernel free. It accepts a pointer
to an allocated buffer and does the following actions:

1. Make sure prefix and postfix sizes for the allocated block are valid.

2. Iterate both free-list bins:
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(a) For each free block, make sure prefix and postfix sizes are valid.

(b) If neighboring free blocks are found, coalesce them into one free block.

3. Make sure the current freed size isn’t larger than the total allocated data (global variable).

4. Add the new free block into the correct free-list bin.

4.2.3 Summary

Since the vulnerability allows us to overflow a heap buffer only with alpha-numerical data, it
can prove hard to corrupt heap metadata in a way that will not cause a system crash1: The
size field is 4 bytes long, and the smallest value2 we can write is 0x30303030, a large number,
making it hard for us to fake a postfix size that will pass validation3. We can overwrite an
allocated block without worrying about unexpected crashes only until that block itself is freed,
at which point an error flow will be triggered including an assert failure and a device crash.

Because of the checks implemented in this heap configuration, we decided to exploit the
device by overwriting application-specific data structures allocated on the heap rather than the
heap metadata itself.

4.3 Exploitation Technique

The DNS name parsing vulnerabilities exist in all types of queries, either through the use of a
CNAME record (which is always allowed) or though name fields in MX or PTR records. The
attack surface we chose is the MX response parsing logic, for a few reasons.

First, when the device boots with a mail recipient configured, it will send out 3 MX requests
by default before giving up. Because we chose to overflow application-specific data structures,
we need to shape the heap so that we overflow our desired data structure. Shaping is more
straight forward with multiple DNS request-response pairs. On top of that, since we don’t have
any debug interfaces, it is useful crash the device anyway to get it into a relatively deterministic
device state. Therefore, the attack scenario chosen is to cause a crash by overflowing the heap
with garbage upon any DNS request. After the device reboots in a clean state and starts sending
MX requests, we will execute our exploit logic.

4.3.1 Target Data Structure

During DNS response parsing all sorts of data structures are allocated, including the previously
mentioned tsDnsCacheEntry and addrinfo structures , among others. We chose tsDnsCache-

Entry as our overflow target.
Especially interesting is the parsing of the CNAME answer record: the record parsing loop

saves pointers to the CNAME record and returns to parse it after all other answer records were
parsed. Unlike other names where a new addrinfo struct is allocated, CNAME records are
parsed as follows:

1 // ...

2 unsigned short length;

3 addrinfo far * first_addr_info;

4 char far * cname_label_buffer = 0;

5

1According to the metadata validations specified earlier.
2We can also use bytes smaller than 0x30, such as ’.’, but this doesn’t solve the problem and imposes new

limitations.
3We succeeded in doing this, but the limitations were complex and this did not seem like a promising ex-

ploitation plan

Ripple20 c© 2020 JSOF Ltd. 17 Technical White Paper



6 if (found_cname) {

7 // Get the first addr info from `tsDnsCacheEntry`

8 first_addr_info = t_dns_cache_entry.dnscAddrInfoPtr;

9 if (first_addr_info != NULL) {

10 // get CNAME name length from the packet (the usual vulnerabilities here...)

11 length = tfDnsExpLabelLength(cname_rdata_ptr, packet_ptr, cname_rdata_end_ptr);

12 if (length != 0) {

13 // allocate

14 cname_label_buffer = tfGetRawBuffer(length);

15 if (cname_label_buffer != NULL) {

16 // copy to new buffer

17 tfDnsLabelToAscii(cname_rdata_ptr, cname_label_buffer, packet_ptr, 1, 0);

18 first_addr_info.ai_canonname = cname_label_buffer;

19 }

20 }

21 }

22 }

CNAME record names don’t get a new addrinfo, but are placed in the first one pointed to by
tsDnsCacheEntry. Therefore, if we manage to overflow tsDnsCacheEntry->dnscAddrInfoPtr,
we can cause writing of a dword to a location of our choosing (as long as the address is alphanu-
merical, like our overflow); The dword written will be a pointer to a newly allocated buffer
containing our CNAME. This is a strong exploitation primitive, and thus the one we ended up
using.

4.4 Heap Shaping

By shaping the heap using the two allocation primitives specified later, we managed to overflow
the tsDnsCacheEntry struct without corrupting any free blocks. It is worth noting that in the
case of this UPS device, failure to shape the heap will most likely cause the network card to
crash, which has no noticeable effect on UPS operation. The network card reboots quickly and
automatically, allowing several additional exploitation attempts 4.

In our PoC exploit, we initiated a TCP handshake through an open port to allow easier
shaping. This is not necessary, as the first 2 MX packets can be crafted to do the entire shaping
job, as shown below.

4.4.1 Target Shape

In order to overwrite this struct, the overflowing MX record needs to be allocated before the ts-
DnsCacheEntry struct. Chronologically, the cache entry is allocated on DNS request generation,
before the MX record name buffer. Luckily, this heap is sophisticated enough to favor tightest-
fit for allocations. This means we can create a pattern will result in allocations in the correct
order for exploitation. A tsDnsCacheEntry allocation is 0xA0 bytes large, and we control our
MX record size completely. The pattern that would fit our needs is shown in figure 4.4.1. The
blocks labeled “allocated” are required to prevent free block coalescing and act as separators.

4.4.2 Temporary Allocation Primitive

The “best” allocation primitive in the DNS parsing code is name buffer allocation. For every
answer (MX, PTR, CNAME) that has a DNS name in its RDATA field, tfGetRawBuffer is
used to allocate a buffer for that name. It is important to note that along with this buffer,
an addrinfo struct of size 0x38 bytes is also allocated. This primitive allows us to allocate a

4if the device is crashed too many times, eventually, the it will reboot in to a different state, resulting in
approximately 15 minutes of down time for the network card.
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Figure 4.2: Target shape

buffer of any size with arbitrary alpha-numerical contents, along with a less-controlled addrinfo
struct.

However, this allocation primitive alone is not sufficient as every allocated addrinfo and
the name buffers associated with it are freed after DNS parsing fails. If DNS parsing doesn’t
fail, no further MX requests will be sent, preventing us from sending more responses. In order
to create holes of arbitrary size, we need both an allocation primitive that will get freed (the
hole) and another allocation that won’t, preventing coalescing.

4.4.3 Persistent Allocation Primitive (or: Poking Holes)

To put allocated “seperators” between our newly created holes, we need an allocation that won’t
get freed between different DNS request-response pairs. A memory leak in the DNS parsing
loop comes to the rescue. For most record types, parsing begins like this:

1 // First, check if the type fits for A resource records

2 if (t_dns_cache_entry.dnscQueryType == DNS_TYPE_A && answer_rr_dns.type == DNS_TYPE_A) {

3 // Make sure RDLENGTH is sane for this type - for A records, 4 bytes of IP

4 if (answer_rr_dns.RDLENGTH == 4) {

5 new_addr_info = tfDnsAllocAddrInfo();

6 // Further parsing...

7 // Linking the new addrinfo to the list (t_dns_cache_entry.dnscAddrInfoPtr)

8 } else {

9 // Exit with error code

10 }

11 }

However, in the case of MX records, the order in which validity checks are applied is different:

1 // Check if the type fits for MX resource records

2 if (t_dns_cache_entry.dnscQueryType == DNS_TYPE_MX && answer_rr_dns.type == DNS_TYPE_MX) {

3 new_addr_info = tfDnsAllocAddrInfo();

4 if (new_addr_info != NULL) {

5 if (answer_rr_dns.RDLENGTH >= 2) {

6 // Further parsing...

7 // Linking the new addrinfo to the list (t_dns_cache_entry.dnscAddrInfoPtr)

8 } else {

9 // Exit with error code

10 }

11 }

12 }

According to this logic, if an MX resource record with RDLENGTH field smaller than 2 is
supplied, then a new addrinfo struct will be allocated but the function will finish execution
before linking it to the cache entry. Since DNS parsing failure results only in the cache entry
and all subfields - including the addrinfo list - being freed, this new unlinked addrinfo will not
be freed, resulting in a memory leak. We can craft a packet containing a few valid MX records
to allocate a buffer of arbitrary size, concluding with an invalid MX record that will place an
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unlinked addrinfo at the end of our buffer. Upon DNS parsing exit, all valid MX names and
addrinfo structs will be freed except for the unlinked addrinfo, resulting in a hole pattern as
described above.

4.5 Overwriting a Far Call Destination

After reliable overflow of tsDnsCacheEntry.dnscAddrInfoPtr is achieved, we need to pick a
destination address to write our CNAME buffer pointer to. Since our overflow allows alpha-
numerical values (including “.” and “-”) only, our accessible address space is rather limited.
Unfortunately, none of the loaded firmware files (bootloader, OS, application) are loaded in an
alpha-numeric accessible address. However, we have a few assisting factors. First, the last byte
of our overflow, as common in string overflows, is a null byte. In little-endian architectures, the
the last byte is the most significant one - in our case, segment high byte. Second, because of
the weird way segmentation works on this processor (8-bit shift instead of 4-bit), we can reach
non-alphanumeric segments relatively easily.

Figure 4.3: Segmented address to linear address calculation

As apparent from figure 4.3, it is possible to pick XX and YY values that are alphanumeric,
yet their sum contains a high non-alphanumeric byte.

It turns out that most of the code handling heap operations (free, malloc, etc.) is relocated
dynamically to segment 0x008C. This segment is reachable using the method described above.

One of the ways to achieve code execution by writing a pointer to a code section address is
to overwrite a far call opcode. In x86 16-bit far calls are encoded as following:

Figure 4.4: x86 far-call opcode

Our far pointer write fits the offset-segment pattern, so we can change the destination of
any far-call in an alpha-numerical address to point to our controlled CNAME buffer.

The far-call we chose is located in an error flow in free which originally calls assert. We

specifically chose this far-call destination for two reasons. First, this error flow will be executed
when the MX record from which our overflow happened. This allows us to control the shellcode
execution. Second, in this error flow, the stack frame will contain a pointer to the end of the
CNAME buffer that contains our alphanumeric shellcode. As will be explained later on, when
running an alphanumeric shellcode, a pointer to a location in the shellcode is necessary to
achieve arbitrary shellcode execution (rather than alphanumeric only).

4.6 Executing Shellcode

Building on previous stages, we can now assume there is a malicious far-call in the free() error
flow. This flow will be triggered when the prefix and postfix size fields of the block passed to
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free() do not match (see section 4.2.2). This is necessarily true for the MX name buffer from
which the overflow happened: because the overflow is linear, it will always overwrite the postfix
size field, but not the prefix size field. This mismatch will cause the error flow to take place,
executing our far-call and redirecting execution to the buffer containing our arbitrary CNAME.

4.6.1 Triggering tsDnsCacheEntry Free

The free() error flow will be executed only when the cache entry is freed. This won’t happen
automatically, even though the DNS TTL can be specified to be zero because the cache-entry
TTL is checked and subsequently freed only when another DNS request for the same domain is
generated by the device. DNS cache entry freeing can be remotely triggered by causing system
events that trigger MX requests, such as attempting to login to the Web/FTP/SSH/Telnet
interfaces with bad credentials. Freeing should also take place without manual interference due
to regular system events (routine system checks, power fluctuations, etc).

4.6.2 Executing Arbitrary Shellcode

Reaching arbitrary shellcode execution from alpha-numeric shellcode on x86 is a well-known
problem and has been discussed in depth and solved long ago. 16-bit mode makes this a bit
trickier, but the essence is the same. We used a technique inspired by [1], in which a two-stage
decoder is implemented:

1. The first decoder is completely alpha-numerical - using push/pop instructions to move
values between registers, and xor against memory in the cs segment to modify itself (self-
modifying). An alpha-numeric only shellcode decoder is difficult to write without having
a pointer to a known position in the shellcode. In the execution context we chose the
free() assert error flow because this way, when the shellcode starts running there is a
pointer on the stack to the end of the CNAME buffer, and this satisfies our prerequisite
for a pointer in to the shellcode. We used pop to move this pointer in to a register and
then use it to xor other parts of the shellcode, generating non-alphanumeric opcodes.
This stage also pushes the encoded arbitrary shellcode on the stack before handing over
execution to the next stage. One of the requirements for DNS names is having a “.”
character at least every 63 characters, but luckily in x86 this is the cs: prefix for memory
operations, which is needed anyway for this stage of decoding.

2. This stage is hard-coded and not arbitrary, to make writing the alpha-numerical decoder
from the previous stage easier (alpha-numerical x86 doesn’t allow complex flow control).
However, it is non-alpha-numerical, allowing for more complex code structures such as
loops, arbitrary memory manipulation and arbitrary jumps & calls. This stage loops over
and decodes the encoded alpha-numeric code we pushed to the stack in the last stage,
finishing by handing over execution to it.

When these decoders are done, we can run any payload without worrying about encoding
issues. Our payload of choice is rather simple, as it just turns off the UPS power outlets by
calling a built-in function, but any other payload of course can be executed as well.

4.7 Putting It All Together

To recollect, the exploit consists of four main stages:

1. Crashing the device by waiting for any DNS request and corrupting the heap. This is
done to reach a deterministic heap state.

Ripple20 c© 2020 JSOF Ltd. 21 Technical White Paper



2. Shaping the heap by replying to the first 2 MX requests with resource records of carefully
chosen sizes, followed by a corrupted MX resource record that will cause a memory leak,
securing our hole.

3. Overflow tsDnsCacheEntry via the 3rd MX request, resulting in a pointer to a controlled
buffer being written as a far call destination.

4. Trigger or wait for an event that causes a DNS request to be issued and our tsDns-

CacheEntry to be freed. Execution will be redirected through the corrupted far-call to
our alphanumeric shellcode. This results in a two-stage decoding procedure being executed
leading to arbitrary shellcode execution from the stack.
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Ripple20 is a series of 19 zero day vulnerabilities that affect hundreds of millions of devices,

andwere discovered by JSOF research labs in a TCP/IP stack that is widely used in

embedded andIoT devices.The starting point for these vulnerabilities is an embedded TCP/IP

low-level Internet proto-col suite library by a company called Treck, inc.  This is a basic

networking element, a buildingblock, useful in any context, for any device that works over a

network.The damaging effects of a these vulnerabilities has been amplified like a ripple

effect to adramשatic extent due to the supply chain factor.  A single corrupt component,

though it may berelatively small, impacts a wide range of industries, applications, companies,

and people.The vulnerabilities have a wide affect on entire supply chains in almost all sectors

in theIoT and embedded device world.  The vendors that produce the affected device range

from one-person  boutique  shops  to  fortune  500  multinational  corporations,  and  from 

 connected  smarthomes to industrial and medical device.Of these vulnerabilities:•4 are

critical remote code execution vulnerabilities with CVSS≥9•4 are major with a CVSS≥7•11

more have various lower severity, information leaks, DoS and others[Of the 19 vulnerabilities,

2 were reported anonymously and the rest were reported by JSOF.]We  named  the 

 vulnerabilitieשs  Ripple20  to  capture  the  ripple  effect  caused  by  these  vulnera-bilities,

the “20” added at the end has multiple meanings for us:•The vulnerabilities were reported in

2020.•The Treck stack has been around for more than 20 years.  Possibly the vulnerabilities

too.•There are 19 vulnerabilities, and just like the candles on a birthday cake we are

addingone for next year!
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