

Cache Poisoning and RCE in

Popular DNS Forwarder

dnsmasq

DNSpooq

J A N U A R Y 2 0 2 1

JSOF Research Lab

Moshe Kol

Shlomi Oberman

DNSpooq: Cache Poisoning and RCE in Popular DNS Forwarder

dnsmasq

The JSOF Research Lab

Abstract

In this paper, we report several security vulnerabilities in dnsmasq [10], a popular lightweight caching
DNS and DHCP server, developed and maintained by Simon Kelley. Dnsmasq is a commonly used
software component in networking devices, such as routers and access points, and is installed by default
in several major Linux distributions. This research has implications for dnsmasq in particular, as well as
a reference point for security requirements of DNS forwarders in general.

We found that dnsmasq is vulnerable to a DNS cache poisoning attack by an off-path attacker (i.e., an
attacker that does not observe the communication between the DNS forwarder and the DNS server). Our
attack allows for poisoning of multiple domain names at once, and is a result of several vulnerabilities
found. The attack can be completed successfully in seconds or a few minutes, and has no special
requirements. We also found that many instances of dnsmasq are mis-configured to listen on the WAN
interface, making the attack possible directly from the Internet. Our estimation is that currently there
are about 1M vulnerable dnsmasq instances open to the Internet and many more that are not open to
the Internet.

In addition, we found a high-severity heap-based buffer overflow vulnerability that could potentially
lead to remote code execution when dnsmasq is configured to use DNSSEC. The vulnerability resides in
the early stages of DNSSEC validation, rendering DNSSEC’s defense against DNS attacks ineffective. We
have not attempted full exploitation of this vulnerability. Other vulnerabilities we found are heap-based
buffer overflows that can only lead to denial-of-service when DNSSEC is used.

We named the collection of vulnerabilities DNSpooq (pronounced ‘DNS spook’), because the vul-
nerabilities involve spoofing a DNS cache record. The last letter was changed from ‘k’ to ‘q’ to connect
it with the name of the affected software – dnsmasq.

1 Introduction

DNS cache poisoning is a classic attack on the DNS infrastructure. If successfully executed, it allows an
attacker to place a malicious entry in the DNS server cache, redirecting network traffic to an attacker-
controlled server. For example, an attacker can place a record stating that www.bank.com resolves to an
attacker-controlled IP address 6.6.6.6. Placing such a malicious cache entry affects all clients which resolve
www.bank.com against the affected DNS server/forwarder.

A general case cache poisoning attack for an off-path attacker operates as follows:

1. Client queries a DNS server for www.bank.com.

2. If www.bank.com isn’t present on the DNS server cache, the server will query another (upstream) DNS
server to resolve that name.

3. While the server waits for the response, an off-path attacker sends many malicious responses, appearing
to come from the true upstream server.

4. If the attacker manage to correctly guess the TXID and source port of the request, a malicious entry
will be inserted into the cache.

The TXID (transaction ID) is a 16-bit field present in the DNS header, used to match an incoming
response to its corresponding request. Since the server will reject any response which does not match a
corresponding TXID, the attacker has to guess the TXID in order for her response to be considered.

1

In the past, the 16-bit TXID field was the only defense against off-path attackers. In 2008, security
research Dan Kaminsky showed [9] that 16 bits of entropy is not enough to protect against cache poisoning
attacks. One mitigation that was proposed and widely adopted is to randomize the source UDP port is
order to increase the number of bits the attacker has to guess. As ports are also 16-bit, with this approach
we reach 32 bits of entropy which is much better. Another mitigation proposed was the 0x20 encoding [2],
with which the server chooses the capitalization of the domain name randomly to further increase entropy.

There is no shortage of prior work on DNS security. However, little has been written publicly about the
security of dnsmasq and DNS forwarders. In 2017, security researchers from Google published [3] several
high-severity vulnerabilities affecting several parts of the software, including the DNS resolver. Recently, a
group of researchers demonstrated [17] a successful “defragmentation attack” on dnsmasq. Though elegant,
the attack assumes predictable IPID of packets sent from the recursive resolver, a condition which is easy
to centrally fix and is not the case for all recursive resolvers, including popular ones, such as Google Public
DNS (8.8.8.8) and Verisign (64.6.64.6). In addition, for the IPID prediction to succeed, an attacker must
control a machine on the LAN. This and other limitations makes the defragmentation attack difficult to
execute over dnsmasq instances open to the Internet. A newer attack, called SAD DNS [11], successfully
defeats source-port randomization using a side channel which leverages ICMP “port unreachable” packets
together with the ICMP global rate limiting feature. This attack allows for DNS cache poisoning, and is
inherently a flaw in the operating system rather than any DNS software.

Our contribution We are reporting 7 vulnerabilities affecting dnsmasq (CVE-2020-25681-CVE-2020-
25687). Of these, 3 vulnerabilities enable cache poisoning attack, while the other 4 are buffer overflow
vulnerabilities, of which one has the potential to take-over the device.

The cache poisoning vulnerabilities enable an attack that exploits a weakness in the software itself, works
with the default configuration and does not require special conditions to be met (e.g. IPID prediction).
Consequently, it applies to a wide range of scenarios: If the dnsmasq instance is open to the Internet, the
attack can be executed directly from the Internet. In case dnsmasq is not open to the Internet, the attack
can also work a user in the LAN simply browses to an attacker-controlled website (see § 4 for details). The
attack is also exploitable if the attacker has control over a device on the LAN.

The buffer overflow vulnerabilities are high-severity vulnerabilities that we found and reported in the
DNSSEC validation procedure of dnsmasq, making the main defense against cache poisoning attacks ineffec-
tive. These show, once again, that an implementation bug can circumvent the entire protocol security. The
vulnerabilities can be combined with the cache poisoning attack to potentially take over a device running a
vulnerable dnsmasq instance which uses DNSSEC.

2 Overview

Generally speaking, DNS forwarders [6] sit between stub resolvers (e.g. PCs, mobile clients) and recursive
resolvers. Their role is to send a received query to the recursive resolver (upstream server), cache the
response and relay it to the querying client. Forwarders provide caching facilities to better serve their
clients, ultimately reduce latency and bandwidth. They are commonly deployed in networking equipment
(such as routers and access points). Dnsmasq is one of the most popular caching DNS forwarders, making it
an interesting and valuable target for attackers. The uses of dnsmasq are varied, and range beyond use only
as a DNS caching server. It is used for other purposes such as traffic redirection for ad-blocking or guest
network browsing.

The cache poisoning attack affecting dnsmasq can be performed in a short time (between seconds to few
minutes) with no special hardware requirements and can poison 9 domain names at a time. The attack is a
result of different vulnerabilities, described in § 3, and can be accomplished using several methods.

Below we outline several scenarios that can be used to mount the attack on a vulnerable dnsmasq instance.
For some devices and configurations other attack scenarios may be possible.

DNSpooq c© 2021 JSOF Ltd. 2 Technical White Paper

(a) Open to the Internet
(b) dnsmasq in LAN with attacker-controlled
machine

(c) dnsmasq in LAN from browser

Figure 1: Cache poisoning attack scenarios

2.1 Scenario 1: Open dnsmasq instances

In this scenario, shown in Figure 1a, an attacker can attack dnsmasq resolvers listening on port 53 on the
WAN interface (open to the internet). As of Sep ’20, according to Shodan.io, there are approximately1 1M
vulnerable dnsmasq instances.

To successfully mount this attack, an attacker will need a server on the Internet with the ability to send
packets with spoofed source IP and a registered DNS domain name. We have demonstrated that both are
easy to acquire.

2.2 Scenario 2: dnsmasq in LAN with attacker-controlled machine

In this scenario, depicted in Figure 1b, an attacker can attack a dnsmasq resolver that only listens on port
53 on the local LAN. In this case, it is possible to perform the attack completely within the LAN, impacting
all devices that are configured to use dnsmasq as their DNS server.

To perform the attack, an attacker will need a registered DNS domain name as well as one of the following:

• Control of single device in the LAN network that can spoof source IP packets.

• Control of single device in the LAN network and a server on the Internet with the ability to spoof
packets.

Often in the case of a hot-spot, captive portal, or guest network, the client may be considered on the
LAN.

So for instance, a malicious user on public/shared machine in an hotel which uses dnsmasq as DNS server
can affect all the guests of the hotel. The same applies to malicious airport guest using the public captive
portal WiFi. Her device is considered in the LAN and a successful execution of the attack can affect all
airport network users.

2.3 Scenario 3: dnsmasq in LAN from browser

Similar to the previous scenario, here we assume that a dnsmasq resolver only listens on port 53 on the local
LAN. To perform the attack, an attacker will need a server on the Internet with the ability to spoof packets
and a registered DNS domain name, as well as one of the following:

1This ranges from 850K-1.2M from day to day. We do not know why.

DNSpooq c© 2021 JSOF Ltd. 3 Technical White Paper

• A machine in the LAN that browses to a website which executes an attacker-controlled JavaScript on
a Safari browser, for example due to being served with a malicious advertisement or clicking on a link.

• Multiple machines browsing with Google Chrome to attacker-controlled content.

Behavior with Edge/IE browsers was not determined.

2.4 Impact

The vulnerabilities result in fake DNS records being injected in to the dnsmasq cache for potentially long
periods of time. This can lead to several main outcomes:

MITM MITM or read capabilities on different types of traffic like emails, web browsing, captive portal,
SIP, SSH, NTP, etc. This can lead to fraud, loss of privacy/secrecy, phishing, etc. It is limited to some
unknown and possibly major extent by HTTPS and HSTS, especially for traffic originating from browsers.

Wormability In scenarios where mobile devices move between networks, the attack may be wormable,
in the sense that a mobile device reaching a new network could have a previously spoofed DNS record in
its internal DNS cache (received from a vulnerable dnsmasq resolver). Accessing this domain is enough to
trigger an additional attack on the new network if the attacker wishes (and dnsmasq is used).

DDoS and Reverse DDoS Exploiting a large amount of dnsmasq resolvers can be used to mount a
massive DDoS attack, by leveraging the cache poisoning attack to inject malicious JavaScript when the user
surfs to one of the poisoned domains. The original website will be shown, tricking the user in to thinking
they are browsing to the authentic site.

In the scenario described thus far, malicious actors substantially increase the amount of traffic forwarded
to a website. However, they can also do the reverse - deny service by reducing the amount of traffic. In
this scenario, malicious actors exploit the vulnerability and redirect users to an incapable server (i.e., server
which does not speak HTTP). Those actors can then extort the website owner in return for stopping the
attack. We call this type of attack reverse DDoS.

3 Cache Poisoning: The Vulnerabilities

The cache poisoning attack is possible due to several different vulnerabilities, all are exploited using a similar
setup and have the same outcome of rouge DNS cache entries being cached by dnsmasq for an arbitrary
amount of time.

The vulnerabilities all reduce the entropy of identifiers TXID (Transaction ID) and source port and their
combination, which should consist of 32 non-predictable bits in total, according to [8]. The vulnerabilities
need to be combined in order to produce a feasible attack.

3.1 CVE-2020-25684: TXID-Port Decoupling

dnsmasq limits the number of unanswered queries that are forwarded to an upstream server. By default, the
maximum number of forwarded queries allowed is 150. This value can be configured by the user. Internally,
forwarded queries are represented using the frec (forward record) structure. Each frec is associated with
the transaction ID of the forwarded query. This field needs to be correctly guessed by an off-path attacker.
frecs are removed when an answer has been accepted or certain number of seconds elapsed.

By default, the number of sockets used for forwarding is limited to 64. Each forward socket is bound to a
random source port. This means that dnsmasq uses source port randomization (SPR) mitigation by default.

In theory, the randomization of TXID and source port should give a 32-bit entropy to each forwarded
query. In practice, it is less. This is because dnsmasq multiplexes multiple TXIDs on top of one port and
does not link each port to a specific TXID. Consequently, the attacker only needs to guess one of 64 ports
and the correct TXID (rather than guessing one exact port and one exact TXID). This leads to a practical

entropy of only 26 bits (232

64) which is lower than 32 bits, but still not very useful for an attacker. As you

DNSpooq c© 2021 JSOF Ltd. 4 Technical White Paper

Figure 2: CRC32 poisoning scenario.

will see later in this paper, this vulnerability can be combined with others to produce a feasible and more
powerful attack.

3.2 CVE-2020-25685: Weak frec Identification

Except for guessing the correct source port, in order to poison the cache, the attacker’s fake response needs
to match one of the frecs currently opened. A response matches an frec if the transaction IDs match and
the question section match (i.e., the response answers a question that was previously asked).

Instead of storing the entire query’s question section in memory, dnsmasq records only the hash of the
question section. This hash value is saved in the corresponding frec at the time of query submission.

If dnsmasq is not compiled with DNSSEC support, it uses a custom CRC32 algorithm as a hash function.
The problem is that CRC32 is not a cryptographically secure hash function; therefore this approach is not
reliable: an attacker can reply with a specially crafted response, the CRC32 of which is the same as the
CRC32 of a query for another name. Making use of this fact, an attacker can generate multiple queries, all
with the same CRC32 but a different name being queried. The attacker then responds with an answer whose
name has the same CRC32 as all of the requests.

For example, in Figure 2, the attacker-controlled client queries dnsmasq for several domains, all of which
have the same CRC32 value (according to dnsmasq CRC32 implementation). In her response, the attacker
places a domain name whose CRC32 value equals to the CRC32 value of the queries.

It is worth mentioning that if dnsmasq is compiled with DNSSEC support, it uses SHA-1 for query
identification instead of CRC32. A collision attack on SHA-1 has been demonstrated in 2017, and SHA-1
is not considered as a cryptographically secure hash function anymore. To successfully execute the attack
with SHA-1, the attacker needs to find 150-300 inputs which hash to the same value. We are not aware of a
technique that makes this task feasible currently.

3.3 CVE-2020-25686: Multiple outstanding requests for the same name

Another issue is that dnsmasq will incautiously create multiple frecs (open requests) with the same name
being queried. It will forward a request for each and will match a correct response to any of them. This issue
allows to launch a successful attack even if dnsmasq uses a cryptographically secure hash function. However,
it is likely that some stub resolvers (such as in browsers) will implement a query deduplication behavior that
may throttle the rate of queries sent. Therefore, for scenarios where the attacker is not in complete control
over the client (e.g., runs a malicious JavaScript in the browser) it is preferable to go with the CRC32 route.

Note that if dnsmasq is compiled with DNSSEC, the attack can still be performed if an attacker is able to
query the same domain name multiple times, such as in an open instance of dnsmasq or control of a machine
in the LAN. Table 1 summarizes the conditions.

These last 2 vulnerabilities, in tandem with the decoupling vulnerability, lead to a situation where the
attacker needs to get any one of the ports right and any one of the TXIDs right. This is because any response
which passes the port and TXID checks will pass the question section hash check - thus matches an frec.

The weak frec identification and decoupling vulnerabilities lead to a practical entropy of 232

150·64 which is
approximately 219, or approximately half a million queries for cache poisoning. This is a practical amount

DNSpooq c© 2021 JSOF Ltd. 5 Technical White Paper

Outcome DNSSEC not compiled DNSSEC compiled
DNSSEC compiled with

validation enabled3

Buffer overflow None None

CVE-2020-25681
CVE-2020-25682
CVE-2020-25683
CVE-2020-25687

Cache poisoning from browser12
CVE-2020-25684
CVE-2020-25685

CVE-2020-25684 CVE-2020-25684

Cache poisoning from host1
CVE-2020-25684
CVE-2020-25685
CVE-2020-25686

CVE-2020-25684
CVE-2020-25686

CVE-2020-25684
CVE-2020-25686

1 If caching is disabled (e.g. with the command line option -c 0), the cache poisoning vulnerabilities can be used to inject
a fake response, appears to be coming from trusted upstream server. This can be used to exploit a buffer overflow or to
poison a single dnsmasq client.

2 Some browsers, like Safari. Does not work on Chrome.
3 E.g. with the --dnssec command line option.

Table 1: Attack prerequisites based on DNSSEC compilation and its validation

of packets to send, and takes somewhere between seconds to < 5 minutes over the Internet to exploit using
a single attack machine, depending on network conditions and setup. We believe with careful optimization,
the attack can be performed in less than 1 minute in most cases2. A dnsmasq configuration with several
upstream servers may raise entropy slightly.

3.4 No Response Verification in DNS Forwarders

An attacker can insert malicious entry into the cache of dnsmasq using CNAME records. To illustrate the
technique, consider a victim which asks to resolve the domain www.example.com (type A), and an attacker
which responds with these two answers:

www.example.com CNAME www.bank.com

www.bank.com A 6.6.6.6

One could expect a DNS server to not believe every answer it got. Indeed, recursive resolvers (such
as BIND) employ some form of verification to answers they receive. The set of rules that govern this
verification is commonly known as bailiwicks. In the case of the malicious answer shown above, the A record
for www.bank.com wouldn’t be inserted into BIND’s cache. Instead, when it constructs the response for the
original query, BIND will query for www.bank.com (or use a cached entry) to get an authoritative answer for
the domain.

In spite of this, as a DNS forwarder, dnsmasq, reasonably, believes every response received from its
upstream DNS server, and doesn’t perform response verification. As response verification obligates contacting
authoritative servers, if dnsmasq were to implement proper verification, it would effectively have to do
the recursive resolution by itself, repeating the work of its upstream server and making query forwarding
redundant3.

The outcome is that when the victim will access her bank’s website, www.bank.com will be resolved to an
attacker-controlled server (6.6.6.6), redirecting user traffic to the attacker. This can be exploited together
with the decoupling and weak frec identification vulnerabilities to poison the cache with up to 9 domain
names at once: The maximum length of CNAME chain is 10; The first CNAME must be the same domain
name as in the question section4, the other 9 CNAMEs may contain arbitrary domains. dnsmasq will also
overwrite existing cache entries for the domains being poisoned, regardless of TTL.

2The main bottleneck is probably the device’s ability to handle responses.
3there could be a middle-way of re-asking the upstream server for every name, but this does not make total sense, except in

the specific context of the described vulnerabilities.
4for more effective attack, this domain will be attacker-controlled, hence “wasting” one CNAME.

DNSpooq c© 2021 JSOF Ltd. 6 Technical White Paper

We acknowledge that this is not a vulnerability per se, and moreover is reasonable behavior, though it
magnifies the attack and similar types of attacks.

4 Cache Poisoning: Attack Details

We confirmed the attack in two scenarios: dnsmasq in LAN with attacker-controlled machine (Figure 1b)
and dnsmasq in LAN from browser (Figure 1c). The scenario of open dnsmasq instances was confirmed
indirectly as part of the first scenario.

Registering a domain All of these scenarios require that the attacker controls a domain, over which the
attack will be based. For this reason, we registered a domain on the Internet and deployed a name server of
our own for it. For the purposes of this section, we will refer to the controlled domain as attacker.com.

Source IP spoofing All of the attack scenarios require that the attacker has the ability to send IP packets
with a spoofed source address. When the attack is performed over the Internet, this requirement suggests
finding an ISP which does not restrict sending spoofed packets. Unfortunately, currently these ISPs are easy
to find [4]. We demonstrated this by purchasing a plan to use a hosted server in one of these ISPs and
sending packets with a spoofed source IP address to another server on a different, more popular, host and
ISP.

When the attacker has complete control over a machine on the LAN – the attack can be fully executed
locally. In this scenario, this is usually the case that no restriction applies and the attack can be performed
with the highest speed.

For convenience reasons, when running our proof-of-concept, which required sending spoofed server re-
sponses over the Internet, we used a middle-box which rewrites the source address so that the packets appear
to be spoofed.

Generating CRC32 collisions For reasons discussed in § 3, we chose to exploit the CRC32 issue (present
if dnsmasq is not compiled with DNSSEC). Dnsmasq uses custom CRC32 implementation to hash the entire
question section of the request/response. For example, a request for www.bank.com type A class IN is hashed
using:

CRC32(b"www.bank.com\x00\x01\x00\x01")

By the properties of the CRC method, given two inputs x, y such that CRC32(x) = CRC32(y), it is
possible to extend them with a common suffix s so that CRC32(x||s) = CRC32(y||s).

This property suggests that if we can find a set of colliding strings for the first part of the domain name
only, then we can append an appropriate suffix later.

We used an SMT solver, specifically Z3 [12], 5 to find multiple preimages for a specific value – the
CRC32 value of the string "malicious". We configured the solver to consider inputs as valid if they contain
lowercase ASCII letters or a dot.

This step only needs to be done once, as a pre-processing step. In our case, we calculated over 300, 000
strings, all of them have the same CRC32 value as the string "malicious".

Attack workflow The attack setup consists of a device running dnsmasq and two servers: one on the
LAN and the other is on the Internet (AWS EC2 free-tier instance).

The server on the LAN generates queries repeatedly for domains with the same CRC32 value. The goal
is to reach and maintain the maximum possible outstanding requests (150 by default).

While dnsmasq forwards the queries to its upstream server (say, 8.8.8.8), the server on the Internet
sends spoofed responses, with the intention that one of the fake responses would be accepted before the
authentic response.

5When looking for an easy way to calculate CRC32 collisions, we encountered http://lists.thekelleys.org.uk/pipermail/

dnsmasq-discuss/2014q1/008053.html in which, several years ago, Julian Bangert pointed out that CRC32 may have security
implications, but not the full flow of an attack. We rewrote the relevant code for our full exploit.

DNSpooq c© 2021 JSOF Ltd. 7 Technical White Paper

http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2014q1/008053.html
http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2014q1/008053.html

Device Version (dnsmasq) Vulnerable? DNSSEC compiled?

Cisco RV160W 2.78 Yes No
Netgear R7000 2.78 No* No
OpenWRT 18.06 and 19.07 2.80 Yes No**

Check Point 1550 V-80 2.78 No* No

* Caching is disabled with the command line option -c 0.
** Unless the dnsmasq-full OpenWRT package is installed (not by default).

Table 2: Tested devices

To increase the probability of success, the attacker aspires to increase the time taken for the upstream
server to return a response. To achieve this, we arrange for the following:

1. Always querying for different domains. We have over 300, 000 domains all with the same CRC32 value.
This amount suffices.

2. Always querying for non-existent domains. So that they won’t be in the cache, and further result in a
query sent to the authoritative name server (of which we control).

3. Delay the response from the authoritative name server as much as possible. As a simple way to achieve
this, we shut down the authoritative server’s DNS software. This can likely be greatly improved upon
to generate longer response times using different delay methods.

These strategies result in a window of opportunity of 2 seconds, which was pretty good for our purposes.
We confirmed that the attack takes between seconds to ≤ 5 minutes to complete in most cases.

Attack from browser Another scenario we verified is executing the attack from a browser. The rules of
the game here are that we can trick the victim in to accessing an attacker-controlled website, causing his
device to execute malicious JavaScript code.

To make the browser generate many DNS queries, we used AJAX requests (via XMLHttpRequest). We
tested our malicious JavaScript on Safari in IOS. The result is that Safari generates queries in an adequately
high pace. However, it tries to resolve the domain with type A and AAAA. The implications of this are that
instead of 150 useful outstanding requests (frecs), we only have 75 (due to the query type being hashed
along with the queried domain).

In Firefox it may be possible to use malicious browser extension to generate queries using the JavaScript
API browser.dns.resolve(). We did not verify this attack vector.

Per our assessment, the Chrome browser limits the amount of outstanding DNS lookups at any given
time. This is probably due to having a fixed number of worker threads performing blocking DNS lookups
[13]. Consequently, executing a successful attack using the Chrome browser requires more machines in the
attacker control.

The behavior of Edge/IE was not determined.

Tested devices dnsmasq versions 2.78 to 2.82 (newest at time of disclosure) are all affected by the
vulnerabilities. Older versions prior to 2.78 were not tested.

We confirmed the attack on several devices and vendors. Table 2 summarizes the results. Our findings
show that some Cisco VPN routers are affected as well as the popular firmware OpenWRT available for
hundreds of devices and models. We also tested devices of Netgear and Check Point and interestingly we
found that they are using dnsmasq with a configuration which disables caching. Therefore, our attack impact
these devices only marginally. It is possible that other models of these vendors are configured to use caching,
and consequently will be affected. For all tested devices, dnsmasq was not compiled with DNSSEC support.
Therefore, they are all vulnerable to CRC32 attack flavor.

DNSpooq c© 2021 JSOF Ltd. 8 Technical White Paper

5 Analysis

Let us briefly sketch a probabilistic analysis of the expected number of packets until success.
Assumptions:

• Spoof packet size (including IP header) is S = 90 bytes.

• Time until authentic response arrives W = 2 seconds 6.

• Attacker bandwidth (bits/second) is R = 100 Mbits/s.

• Number of outstanding queries is K = 150.

• Number of source ports P = 64.

• Number of valid tuples (port, TXID) is N = 64512× 65536.7

The window of opportunity for an attack is 2 seconds, with which the attacker can send

L = W · R

8 · S
= 2 · 100M

8 · 90
= 291270

spoofed packets per second.
The probability that the attacker fails to match a response to a forwarded query is given by:

Pfail =

L−1∏
i=0

(
1− K · P

N − i

)
When L ≈ N

K·P , the probability for success is 50%.
In practice we found that we are largely limited by the rate in which packets are received by the network

interface. We experienced packet drops by the interface. Consequently, the effective bandwidth available
for the attacker is limited by the device’s ability to process network packets at high rate. This differs from
device to device, and so the more processing capability the device has, the faster it can be exploited.

6 DNSSEC Validation Vulnerabilities

The main defence against forgery attacks on the DNS infrastructure is a set of specifications known as
DNSSEC [14] [15] [16]. These security extensions provide resolvers with a cryptographically secure way
to authenticate data, verify its integrity and prove domain non-existence. DNSSEC establishes a chain of
trust from the verified domain up to the root DNS servers. It features key distribution facility by using
designated DNS records, and requires the resolver to establish a trust anchor by external means. DNSSEC
does not provide transport-layer security; This is provided by DNS-over-TLS [7] or DNS-over-HTTPS [5]
specifications.

dnsmasq can be configured as a validating resolver by ensuring that (a) dnsmasq is compiled with DNSSEC
support8, and (b) DNSSEC validation is enabled with the option --dnssec. If those two conditions are true,
then dnsmasq is susceptible to pre-DNSSEC-validation high severity heap-based buffer overflow vulnerabil-
ities found in its latest version at the time of disclosure (2.82). The vulnerabilities can be triggered by
sending a crafted response packet to an open request (frec). This can be combined with the cache poison-
ing attack to make the exploit easier and potentially mount a remote code execution attack over the device
running dnsmasq.

Below we include a brief summary of the vulnerabilities and how to trigger them. We did not attempt
full exploitation of the vulnerabilities. To verify the vulnerabilities, we used the following command line:

6assuming näıve implementation
765536 − 1024 = 64512 ports, because ports 0 to 1023 are reserved.
8HAVE DNSSEC should be defined during compilation

DNSpooq c© 2021 JSOF Ltd. 9 Technical White Paper

Figure 3: Vulnerable flow

sudo ./src/dnsmasq -d --dnssec

--trust-anchor=.,20326,8,2,E06D44B80B8F1D39A95C0B0D7C65D08458E880409BBC683457104237C7F8EC8D --no-resolv

--server=X.Y.Z.W

↪→

↪→

Note: In the following code snippets, the line numbers in each code snippet are the original for version
2.82.

6.1 dnsmasq Internals

Invoking sort rrset The vulnerabilities reside in the sort rrset function in the file dnssec.c. Figure 3
shows the flow of functions en route to sort rrset. The function reply query is called whenever a response
is accepted (from the upstream server). The functions dnssec validate reply and validate rrset have
less importance to us, but we still need to make sure we pass some checks on our way to sort rrset.

To pass the checks, we can pick some RR type, say T , and include (in the malicious response) an RRSIG
record specifying typecovered=T and signername=".". In addition, at least two resource records of type
T should be included (otherwise no sorting is needed!). One of the conditions that explore rrset ensures
is that the owner name of the RRSIG and the other RRs is equal, so this condition must be met as well.

sort rrset Internals The sort rrset function is responsible for sorting a given RRset into a canonical
order, as required by DNSSEC validation procedure [16]. Its signature is:

283 static int sort_rrset(struct dns_header *header, size_t plen, u16 *rr_desc, int rrsetidx,

284 unsigned char **rrset, char *buff1, char *buff2)

We can see it accepts the response packet (header) along with the packet length (plen). rrset is a
pointer to an array of RRs in the set, and rrsetidx is the number of RRs in the set. rr desc is a pointer to
a descriptor of the RR type associated with the RRset. The descriptor specifies how to interpret each part
of the RDATA field: whether it’s a domain name or raw data. More about this descriptor later.

Finally, there are two buffers, buff1 and buff2, which serve as workspace buffers for the sorting routine.
Both buffers are allocated relatively in the beginning of the program, and they are daemon->workspacename

and daemon->keyname, respectively. Those will be the buffers we’ll overflow, so let’s examine how they are
laid out in memory:

MAXDNAME is a constant value equals 1025, so 2*MAXDNAME equals 2050.
As already pointed out, sort rrset is responsible for ordering the RRs in the given rrset in canonical

order. The underlying sorting algorithm implemented in dnsmasq is bubble sort. The function itself is quite

DNSpooq c© 2021 JSOF Ltd. 10 Technical White Paper

convoluted, so we’ll present the high level structure first, and provide snippets of code as the explanation
progresses. The high level structure is shown in the following snippet:

int swap, quit, i, j;

do {

for (swap = 0, i = 0; i < rrsetidx-1; i++) {

/* read rrset[i] */

/* set p1 to the beginning of the RDATA field of rrset[i] */

end1 = p1 + rdlen1;

/* read rrset[i+1] */

/* set p2 to the RDATA of rrset[i+1] */

end2 = p2 + rdlen2;

dp1 = dp2 = rr_desc;

for (quit = 0, left1 = 0, left2 = 0, len1 = 0, len2 = 0; !quit;) {

/* determine if swap is needed */

/* if so, set swap=1. */

}

}

} while(swap);

The high-level structure contains 3 nested loops. The outer-most loop is executed whenever the inner-
most loop sets swap to 1. In each iteration of the outer-most loop, each pair of records in the RRset is
considered.

We will focus on the inner-most for loop, where it is determined if a swap is needed. To understand
the inner for loop, we need to take a deeper look at the rules that govern the sorting. The rules for
canonicalizing resource records and sorting RRsets are described in [15]. A subset of these is provided here
(emphasis added):

“For the purposes of DNS security, RRs with the same owner name, class, and type are sorted
by treating the RDATA portion of the canonical form of each RR as a left-justified unsigned octet
sequence in which the absence of an octet sorts before a zero octet.”

From the specification we learn that (a) an RRset is a collection of resource records with the same owner
name, class and type; (b) the field governs the sorting is the RDATA field; and (c) the resource record must
be in canonical form. This canonical form include: all names are expanded (no compression) and converted
to use lowercase letters. (Note that the structure of the RDATA field depends on the resource record type.
For example, records of type A carry IPv4 address, while MX records carry preference value and a mail server
name.)

In dnsmasq, there is no separate function which canonicalizes a resource record. Instead, the data is
converted to canonical form as it is read from the RDATA portion of the packet. The function responsible for
this task is get rdata:

228 static int get_rdata(struct dns_header *header, size_t plen, unsigned char *end, char *buff, int bufflen,

229 unsigned char **p, u16 **desc)

This function reads data from *p, converts it to canonical form, and stores the result in buff. To know
how to interpret the data, i.e. name or raw data, the descriptor desc is used.9 get rdata is also responsible
for advancing *p and *desc. This is why they are passed as double pointers. The function returns the
number of bytes copied into the buffer. If the return value is 0, the remaining packet data should be used as
raw data (any data which might have been copied into buff should not be considered). This subtle behavior
leads to the first vulnerability - CVE-2020-25681.

6.2 CVE-2020-25681: Heap-based buffer overflow with arbitrary overwrite

Recall that triggering sort rrset requires picking a record type T . For this vulnerability to work, T should
be picked from the following set: NS, MD, MF, SOA, MB, MG, MR, PTR, MINFO, MX, RP, AFSDB,

9The use of descriptors enables handling different record types in a uniform way.

DNSpooq c© 2021 JSOF Ltd. 11 Technical White Paper

RT, PX, NXT, KX, SRV, DNAME. What is special about these types is that their RDATA field includes a
name. If this condition is met, it is possible to trigger a heap-based buffer overflow with arbitrary overwrite.
This can be done by causing get rdata to return 0 on the first/second RR, thus affecting buff1 or buff2

respectively.
To understand why this condition results in memory corruption, consider the following code snippet

taken from the inner for loop of sort rrset:

315 if ((len1 = get_rdata(header, plen, end1, buff1 + left1, (MAXDNAME * 2) - left1, &p1, &dp1)) == 0)

316 {

317 quit = 1;

318 len1 = end1 - p1;

319 memcpy(buff1 + left1, p1, len1);

320 }

321 len1 += left1;

We see that if get rdata returns 0, the remaining data from the resource record’s RDATA is copied to
buff1. The issue is that the end pointer (end1) is computed based on the RR’s RDLENGTH field, which is
attacker controlled. The size of buff1 is fixed: MAXDNAME*2 (2050). It can be overflowed by including an RR
with long RDATA field (longer than 2050). Such records could be sent over UDP as the use of DNSSEC requires
the use of EDNS(0) extensions, which among other things, increase the maximum packet size allowed. The
largest EDNS(0) UDP packet which is supported by dnsmasq is 4096 by default. This size is sufficient to
cleanly overwrite heap memory.

The return value of get rdata can be coerced to be 0 when the descriptor (desc) represents a name (d
== 0). This is due to the following logic in get rdata:

250 if (d == 0 && extract_name(header, plen, p, buff, 1, 0))

251 /* domain-name, canonicalise */

252 return to_wire(buff);

253 else

254 {

255 /* plain data preceding a domain-name, don't run off the end of the data */

256 if ((end - *p) < d)

257 d = end - *p;

258

259 if (d != 0)

260 {

261 memcpy(buff, *p, d);

262 *p += d;

263 }

264

265 return d;

266 }

267 }

We see that if d == 0 but extract name return 0, the function returns 0. Making extract name return
0 can be done in a few ways - including a long name that will exceed MAXDNAME or crafting a malicious
compression pointer loop.

6.2.1 Artifact: Infinite loop

Recall that the role of get rdata is to extract data from the resource record in canonical form. The extracted
data should be compared to determine the canonical order between the two RRs considered.

The following logic from sort rrset is responsible for comparison:

334 if (len1 > len2)

335 left1 = len1 - len2, left2 = 0, len = len2;

336 else

337 left2 = len2 - len1, left1 = 0, len = len1;

338

339 rc = (len == 0) ? 0 : memcmp(buff1, buff2, len);

DNSpooq c© 2021 JSOF Ltd. 12 Technical White Paper

len1 and len2 are the lengths of buff1 and buff2, respectively. The first len=min(len1,len2) bytes
of the two buffers are compared using memcmp.

Based on the rc variable, the next iteration is determined. If rc is greater than 0, a swap occurs, the
inner loop finishes and the next pair of RRs is considered. If rc is less than 0, there is no swap and the inner
loop finishes. The case where rc equals 0 is slightly more involved and is discussed below.

If the heap overflow vulnerability is triggered on buff2, it is possible to affect the state of the other
buffer (buff1). (Recall how they’re laid out in memory.) This affects the comparison result, and could lead
to infinite loop. Here’s how:

Consider two records in the RRset. In the first iteration of the inner loop, there will be overflow from
buff1 into the heap. In addition, the data in the first record will cause memcmp to return rc > 0. This
situation leads to a swap, so the outer loop is performed a second time. This time, p1 and p2 exchanged
roles, so the overflow will be from buff2 into buff1. When the data with which the overwrite is performed
is carefully chosen, it is possible to cause memcmp to return rc > 0 again, thereby swapping once more,
returning to the initial state. The process will continue forever.

6.3 CVE-2020-25682: Heap-based buffer overflow with null bytes

The vulnerability discussed on the previous section was relatively simple. The infinite loop artifact demon-
strated the intricate connections between the different functions and variables. A second vulnerability,
discussed now, exploits the interconnection between sort rrset and get rdata from a different angle.

As already established, when the descriptor says that the current part of the RR’s RDATA is a name,
the function extract name is called. extract name extracts a name from the packet and converts it from
wire-format to “presentation”-format. Presentation format is similar to the wire format, only that the length
bytes are replaced by periods, all letters are converted to lowercase and certain designated characters are
escaped. If the name is extracted (and converted) successfully, a second conversion is used to transform the
result from presentation-format to a canonical wire-format. The second conversion is performed by to wire.

The escaping performed by extract name occurs only when dnsmasq is compiled with DNSSEC support
and turn on DNSSEC validation. You can see it in the following logic from extract name (in rfc1035.c):

80 else if (label_type == 0x00)

81 { /* label_type = 0 -> label. */

82 namelen += l + 1; /* include period */

83 if (namelen >= MAXDNAME)

84 return 0;

85 if (!CHECK_LEN(header, p, plen, l))

86 return 0;

87

88 for(j=0; j<l; j++, p++)

89 if (isExtract)

90 {

91 unsigned char c = *p;

92 #ifdef HAVE_DNSSEC

93 if (option_bool(OPT_DNSSEC_VALID))

94 {

95 if (c == 0 || c == '.' || c == NAME_ESCAPE)

96 {

97 *cp++ = NAME_ESCAPE;

98 *cp++ = c+1;

99 }

100 else

101 *cp++ = c;

102 }

103 else

104 #endif

label type of 0 means a regular label (as opposed to compressed labels). We see that if the accumulated
name length (tracked by namelen) exceeds MAXDNAME, the function fails. (Keep in mind that the name buffer
size is MAXDNAME*2.) After another sanity check, the function iterates over every character in the label and
copies it to the destination buffer (cp). However, if the character is one of \0 (null byte) or ‘.’ (period)

DNSpooq c© 2021 JSOF Ltd. 13 Technical White Paper

or NAME ESCAPE (which expands to 0x01), then two characters are written into the destination buffer (lines
97-98). This is the reason behind setting the name buffer size to twice MAXDNAME.

The code is perfectly fine in cases where the destination buffer size is at least MAXDNAME*2. Otherwise,
an out-of-bounds overwrite could be caused due to improper length validation during escaping. It turns
out that there is one place where the size of destination buffer passed to extract name is not necessarily
MAXDNAME*2. This situation can take place in sort rrset:

312 if ((len1 = get_rdata(header, plen, end1, buff1 + left1, (MAXDNAME * 2) - left1, &p1, &dp1)) == 0)

313 {

314 quit = 1;

315 len1 = end1 - p1;

316 memcpy(buff1 + left1, p1, len1);

317 }

318 len1 += left1;

We already saw this code before. Notice how the destination buffer passed to get rdata (and subsequently
to extract name) is buff1 + left1. In other words, an offsetted buffer is passed. The assumption that
extract name makes about the size of its destination buffer no longer holds true when the offset (left1) is
greater than 0.10

Remember how the extracted name is then converted to a canonical wire-format by to wire. When
to wire reaches an escape character, it will shift the entire buffer one byte to the left and undo the escaping
operation. While doing this it will keep copying the trailing null-byte:

43 static int to_wire(char *name)

44 {

... //

55 for (q = p; *q; q++)

56 *q = *(q+1); /* shift left (copy trailing null byte) */

57 (*p)--; /* undo escaping */

The end result is that the arbitrary bytes written out-of-bounds by extract name are replaced with null
bytes after to wire is executed. Consequently, this primitive gives a heap-based buffer overflow with null
bytes.

It remains to be shown that it is possible to arrange for a large offset (left1/left2) that will cause
memory corruption. This is a little tricky to get right. To explain the set of conditions which needs to be
met to reach this situation, consider the inner for loop of sort rrset:

310 for (quit = 0, left1 = 0, left2 = 0, len1 = 0, len2 = 0; !quit;)

311 {

312 if (left1 != 0)

313 memmove(buff1, buff1 + len1 - left1, left1);

314

315 if ((len1 = get_rdata(header, plen, end1, buff1 + left1, (MAXDNAME * 2) - left1, &p1, &dp1)) == 0)

316 {

317 quit = 1;

318 len1 = end1 - p1;

319 memcpy(buff1 + left1, p1, len1);

320 }

321 len1 += left1;

322

323 if (left2 != 0)

324 memmove(buff2, buff2 + len2 - left2, left2);

325

326 if ((len2 = get_rdata(header, plen, end2, buff2 + left2, (MAXDNAME *2) - left2, &p2, &dp2)) == 0)

327 {

328 quit = 1;

329 len2 = end2 - p2;

330 memcpy(buff2 + left2, p2, len2);

10Due to memory allocator size alignment, the offset might actually need to be larger to overwrite the next heap chunk. Our
experiments show that an offset of at least 18 is sufficient.

DNSpooq c© 2021 JSOF Ltd. 14 Technical White Paper

Figure 4: PX record RDATA field

331 }

332 len2 += left2;

333

334 if (len1 > len2)

335 left1 = len1 - len2, left2 = 0, len = len2;

336 else

337 left2 = len2 - len1, left1 = 0, len = len1;

338

339 rc = (len == 0) ? 0 : memcmp(buff1, buff2, len);

340

341 if (rc > 0 || (rc == 0 && quit && len1 > len2))

342 {

343 unsigned char *tmp = rrset[i+1];

344 rrset[i+1] = rrset[i];

345 rrset[i] = tmp;

346 swap = quit = 1;

347 }

348 else if (rc == 0 && quit && len1 == len2)

349 {

350 /* Two RRs are equal, remove one copy. RFC 4034, para 6.3 */

351 for (j = i+1; j < rrsetidx-1; j++)

352 rrset[j] = rrset[j+1];

353 rrsetidx--;

354 i--;

355 }

356 else if (rc < 0)

357 quit = 1;

358 }

359 }

We see that the offsets, left1 and left2, are set on lines 334-337 if there is a discrepancy between len1

and len2. On line 339 a comparison between buff1 and buff2 is executed. Based on the value of rc an
action is taken (lines 341-358): swap, remove duplicate, quit loop or do nothing (proceed with the next
iteration). Therefore, to reach a situation where left1 or left2 are positive during the second iteration,
the value of quit must be zero and rc must be zero.

The tricky part is that the comparison on line 339 compares between buffers in wire-format. It is easy
enough to cause a discrepancy between len1 and len2 by specifying a name which is longer than the other.
However, the comparison takes the label length bytes into account, which are different if the names are
different. The näıve attempt fails.

The key insight is that bytes not participating in the buffer comparison are memmove’d in the next
iteration. It is possible to exploit this behavior when records of type PX [1] are used.

PX records are now obsolete, but still accepted by dnsmasq. Their original purpose is irrelevant for this
discussion, only the structure of their RDATA field, which is shown in Figure 4. The MAP822 and MAPX400

fields are domain names. The descriptor for this record type specifies 2 raw bytes (for the preference value)
followed by two domains.

It is possible to control the length returned by get rdata when leading raw bytes are processed. This is
done by specifying an RDLENGTH value which is small. An example illustrates this better.

Consider the two records shown in Figure 5. On the first iteration of the inner loop, two bytes are read
for the first record and only one byte is read for the second record. This is due to specifying RDLENGTH value
of 1 for the second record. Here’s the logic from get rdata which explains this behavior:

250 if (d == 0 && extract_name(header, plen, p, buff, 1, 0))

251 /* domain-name, canonicalise */

DNSpooq c© 2021 JSOF Ltd. 15 Technical White Paper

Figure 5: Two PX records. The second is malformed since the RDLENGTH value is 1.

252 return to_wire(buff);

253 else // NOTE: this branch is taken since d==2

254 {

255 /* plain data preceding a domain-name, don't run off the end of the data */

256 if ((end - *p) < d)

257 d = end - *p;

258

259 if (d != 0)

260 {

261 memcpy(buff, *p, d);

262 *p += d;

263 }

264

265 return d;

266 }

267 }

Initally, d equals 2 and the else branch is taken. Since we specified RDLENGTH of 1, d will be updated on
line 257 to be 1 (instead of 2). This value is returned from get rdata.

Back to the inner loop, the memcmp call is executed, but only a single byte is checked. In our example,
the first byte of the first and second record is 0x41, so rc comes out 0. left1 is set to 2− 1 = 1. Since quit

is not set to 1 in any stage, a second iteration follows.
In the second iteration of the inner loop, the second byte of the first record (0x3f) will moved to offset

0 of buff1, by the line:

312 if (left1 != 0)

313 memmove(buff1, buff1 + len1 - left1, left1);

The first call to get rdata will read a null byte to offset 1 of buff1 (as specified in the first record in
Figure 5). The second call to get rdata will read a name starting from 0x3f (second record of Figure 5).
The first character of this name is null-byte (to match the null-byte read from the first record). Null-bytes
embedding is a feature, though it is not crucial for this vulnerability. Note that the name being read from
the second record is read after the end pointer. This is possible because extract name performs a bound
check on the whole packet buffer rather than on resource records boundaries.

Our records were crafted so that len2 == 0x401 and len1 == 1+1 == 2. This results in two bytes being
compared in the memcmp call:

DNSpooq c© 2021 JSOF Ltd. 16 Technical White Paper

Consequently, a third iteration of the inner loop will be taken. Now with a large left2 value of 0x3ff.
When the third iteration fires, a second name will be read into buff2 + left2 (corresponding to MAPX400

field of the PX RR). This name will contain many characters that need to be escaped, and thus overflowing
our buffer.

In this example buff2 is overflowed. Our findings show that it is also possible to craft a packet such that
buff1 will be overflowed.

6.4 CVE-2020-25683/7: Heap-based buffer overflow with large memcpy

The third and fourth vulnerabilities allow for the execution of a very large memcpy (memcpy that is called
with a negative length; sometimes called “wild copy”). There are two ways to achieve this, both can be said
to stem from the same root cause, and are tracked as separate CVEs.

Say we specify an RDLENGTH value of 1 as explained previously. extract name only check for packet buffer
boundaries (it does not check resource records boundaries), so it will advance the given name pointer (*p)
past the RR end pointer. This leads to a situation where the difference end-*p is negative.

There are two routes to exploit this situation. The first, in sort rrset (CVE-2020-25687):

326 if ((len2 = get_rdata(header, plen, end2, buff2 + left2, (MAXDNAME *2) - left2, &p2, &dp2)) == 0)

327 {

328 quit = 1;

329 len2 = end2 - p2; // NOTE: can be negative

330 memcpy(buff2 + left2, p2, len2);

331 }

If get rdata returns 0 (section 6.2 discusses how it can be done), then len2 might end up negative,
leading to a wild copy.

The second way is found in get rdata (CVE-2020-25683):

250 if (d == 0 && extract_name(header, plen, p, buff, 1, 0)) // NOTE: extract_name returns 0

251 /* domain-name, canonicalise */

252 return to_wire(buff);

253 else

254 {

255 /* plain data preceding a domain-name, don't run off the end of the data */

256 if ((end - *p) < d) // NOTE: signed comparison

257 d = end - *p; // NOTE: will enter here, d will be negative

258

259 if (d != 0)

260 {

261 memcpy(buff, *p, d); // NOTE: will reach here

262 *p += d;

263 }

264

265 return d;

266 }

To reach this situation, the same method of using PX records is used. This time, the MAPX400 field will
contain an invalid name which causes extract name to return 0. On the else branch, the value (end-*p)

is negative. The variable d is declared as a signed integer; therefore, the comparison on line 256 is a signed
comparison. Since d equals 0 and (end-*p) is negative, d is set to a negative value on line 257. The wild
copy happens on line 261.

7 Mitigations

Find out if your device runs dnsmasq by consulting the device’s vendor or by issuing a chaos query using:

dig +short chaos txt version.bind

DNSpooq c© 2021 JSOF Ltd. 17 Technical White Paper

Update your dnsmasq software to the latest version (2.83 or above). This is the best and only complete
mitigation.

To prevent an attack from the LAN, implement layer 2 security features, such as DHCP snooping and
IP source guard.

Workarounds (partial):

• Configure dnsmasq not to listen on WAN interfaces if unnecessary in your environment.

• Reduce the maximum queries allowed to be forwarded with the option --dns-forward-max=<queries>.
The default is 150, but it could be lowered.

• Temporarily disable DNSSEC validation option until you get a patch.

• Use protocols that provide transport security for DNS (such as DoT or DoH). This will mitigate
DNSpooq but may have other security and privacy implications. Consider your own setup, security
goals, and risks before doing this.

• Reducing the maximum size of EDNS messages will likely mitigate some of the vulnerabilities. This,
however, has not been tested and is against the recommendation of the relevant RFC5625.

8 Conclusion

DNS is an Internet-critical protocol whose security greatly affect the security of Internet users. In this paper,
we presented 7 vulnerabilities affecting the popular DNS forwarder dnsmasq. These issues put networking
and other devices at a risk of compromise and affect millions of Internet users which can suffer from the
cache poisoning attack and RCE presented. This highlights the importance of DNS security in general and
the security of DNS forwarders in particular. It also highlights the need to expedite the deployment of DNS
security measures such as DNSSEC, DNS transport security and DNS cookies.

It’s not DNS...
There’s no way it was DNS...
It was DNS.

- SSBroski

9 References

[1] C. Allocchio, A. B. Bonito, B. A. Cole, S. Giordano, and R. Hagens. Using the Internet DNS to Distribute
RFC1327 Mail Address Mapping Tables. RFC 1664, Aug. 1994. URL https://rfc-editor.org/rfc/

rfc1664.txt.

[2] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee. Increased dns forgery resistance through
0x20bit encoding. pages 211–222, 01 2008. doi: 10.1145/1455770.1455798.

[3] K. S. Fermin J. Serna, Matt Linton. Behind the Masq: Yet more DNS, and DHCP, vulnerabilities. URL
https://security.googleblog.com/2017/10/behind-masq-yet-more-dns-and-dhcp.html.

[4] C. for Applied Internet Data Analysis. State of IP Spoofing. URL https://spoofer.caida.org/

summary.php.

[5] P. E. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). RFC 8484, Oct. 2018. URL
https://rfc-editor.org/rfc/rfc8484.txt.

[6] P. E. Hoffman, A. Sullivan, and K. Fujiwara. DNS Terminology. RFC 8499, Jan. 2019. URL https:

//rfc-editor.org/rfc/rfc8499.txt.

DNSpooq c© 2021 JSOF Ltd. 18 Technical White Paper

https://rfc-editor.org/rfc/rfc1664.txt
https://rfc-editor.org/rfc/rfc1664.txt
https://security.googleblog.com/2017/10/behind-masq-yet-more-dns-and-dhcp.html
https://spoofer.caida.org/summary.php
https://spoofer.caida.org/summary.php
https://rfc-editor.org/rfc/rfc8484.txt
https://rfc-editor.org/rfc/rfc8499.txt
https://rfc-editor.org/rfc/rfc8499.txt

[7] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. E. Hoffman. Specification for DNS over
Transport Layer Security (TLS). RFC 7858, May 2016. URL https://rfc-editor.org/rfc/rfc7858.

txt.

[8] B. Hubert and R. Mook. Measures for Making DNS More Resilient against Forged Answers. RFC 5452,
Jan. 2009. URL https://rfc-editor.org/rfc/rfc5452.txt.

[9] D. Kaminsky. Black ops 2008 – its the end of the cache as we know it. 2008.

[10] S. Kelley. Dnsmasq. URL http://www.thekelleys.org.uk/dnsmasq/doc.html.

[11] K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang, and H. Duan. Dns cache poisoning attack reloaded:
Revolutions with side channels. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’20, page 1337–1350, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450370899. doi: 10.1145/3372297.3417280. URL https://doi.org/

10.1145/3372297.3417280.

[12] Microsoft. Z3 Theorem Prover. URL https://github.com/Z3Prover/z3.

[13] T. C. Project. DNS Prefetching. URL https://www.chromium.org/developers/design-documents/

dns-prefetching.

[14] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends. DNS Security Introduction and Require-
ments. RFC 4033, Mar. 2005. URL https://rfc-editor.org/rfc/rfc4033.txt.

[15] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends. Resource Records for the DNS Security
Extensions. RFC 4034, Mar. 2005. URL https://rfc-editor.org/rfc/rfc4034.txt.

[16] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends. Protocol Modifications for the DNS Security
Extensions. RFC 4035, Mar. 2005. URL https://rfc-editor.org/rfc/rfc4035.txt.

[17] X. Zheng, C. Lu, J. Peng, Q. Yang, D. Zhou, B. Liu, K. Man, S. Hao, H. Duan, and Z. Qian. Poison
over troubled forwarders: A cache poisoning attack targeting DNS forwarding devices. In 29th USENIX
Security Symposium (USENIX Security 20), pages 577–593. USENIX Association, Aug. 2020. ISBN
978-1-939133-17-5. URL https://www.usenix.org/conference/usenixsecurity20/presentation/

zheng.

DNSpooq c© 2021 JSOF Ltd. 19 Technical White Paper

https://rfc-editor.org/rfc/rfc7858.txt
https://rfc-editor.org/rfc/rfc7858.txt
https://rfc-editor.org/rfc/rfc5452.txt
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://doi.org/10.1145/3372297.3417280
https://doi.org/10.1145/3372297.3417280
https://github.com/Z3Prover/z3
https://www.chromium.org/developers/design-documents/dns-prefetching
https://www.chromium.org/developers/design-documents/dns-prefetching
https://rfc-editor.org/rfc/rfc4033.txt
https://rfc-editor.org/rfc/rfc4034.txt
https://rfc-editor.org/rfc/rfc4035.txt
https://www.usenix.org/conference/usenixsecurity20/presentation/zheng
https://www.usenix.org/conference/usenixsecurity20/presentation/zheng

Ripple20 is a series of 19 zero day vulnerabilities that affect hundreds of millions of devices,

andwere discovered by JSOF research labs in a TCP/IP stack that is widely used in

embedded andIoT devices.The starting point for these vulnerabilities is an embedded TCP/IP

low-level Internet proto-col suite library by a company called Treck, inc. This is a basic

networking element, a buildingblock, useful in any context, for any device that works over a

network.The damaging effects of a these vulnerabilities has been amplified like a ripple

effect to adramשatic extent due to the supply chain factor. A single corrupt component,

though it may berelatively small, impacts a wide range of industries, applications, companies,

and people.The vulnerabilities have a wide affect on entire supply chains in almost all sectors

in theIoT and embedded device world. The vendors that produce the affected device range

from one-person boutique shops to fortune 500 multinational corporations, and from

 connected smarthomes to industrial and medical device.Of these vulnerabilities:•4 are

critical remote code execution vulnerabilities with CVSS≥9•4 are major with a CVSS≥7•11

more have various lower severity, information leaks, DoS and others[Of the 19 vulnerabilities,

2 were reported anonymously and the rest were reported by JSOF.]We named the

 vulnerabilitieשs Ripple20 to capture the ripple effect caused by these vulnera-bilities,

the “20” added at the end has multiple meanings for us:•The vulnerabilities were reported in

2020.•The Treck stack has been around for more than 20 years. Possibly the vulnerabilities

too.•There are 19 vulnerabilities, and just like the candles on a birthday cake we are

addingone for next year!

WHO WE ARE

JSOF is a multidisciplinary team focused on solving product
cyber security challenges. We are research oriented and
focus exclusively on product security. We excel in projects
that are complex, time-sensitive, or mission-critical.

CONTACT US

DNSpooq- © 2021 JSOF Ltd.

info@jsof-tech.com

www.jsof-tech.com

https://twitter.com/JSOF18
https://www.linkedin.com/company/jsof
http://www.jsof-tech.com/

